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The bubble-free Belousov-Zhabotinsky reaction has been used to study the effects of centrifugal forces
on autowave propagation. The reaction parameters were chosen such that the system oscillates naturally
creating target waves. In the present study, the system was forced to rotate with a constant velocity around
a central axis. In studying the effects of such a forcing on the system, we focused on target dynamics.
The system reacts to this forcing in different ways, the most spectacular being a dramatic increase in the
period of the target, the effect growing stronger as we move away from the center of rotation. A numerical
study was carried out using the two-variable Oregonator model, modified to include convective effects through
the diffusion coefficient. The numerical results showed a good qualitative agreement with those of the
experiments.
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I. INTRODUCTION

The ability of active media to organize themselves into
spiral waves, targets, and other spatiotemporal structures and
their ability to interact with external force fields has been the
object of numerous experimental and numerical studies.
These active media can be observed in a variety of systems
from galaxies to bacteria colonies such as the amoeba Dic-
tyostelium Discoideum �1�, in chemical systems such as the
Belousov-Zhabotinsky reaction �3�, in signal propagation in
the nervous system �2�, and in the cardiac tissue.

Active chemical systems are often used to simulate these
structures. They arise in systems where only reaction-
diffusion processes can take place �4,5� due to the propaga-
tion properties of the wave front. In order to understand the
mixing processes that result from the interaction of external
force fields with the system, it is necessary to develop a more
general description of the problem including advection as
well as reaction-diffusion processes �6�, or to modify the
diffusion coefficient to take into account the changes in the
interactions between chemical species that result from the
presence of electrical fields �7�.

The influence of temperature and density gradients has
been studied by several authors �8,9�, as well as the effects of
the flow generated by these gradients on the gravitational
field �10�. In this paper, we will investigate the effect of
centrifugal forces on a diffusion-reaction generated target in
a two-dimensional active medium, such that no density
gradient-induced flows exist.

II. EXPERIMENTAL RESULTS

The experimental setup consisted of a rotating platform
that was driven by a DC electric motor; the speed of rotation
was controlled by varying the motor supply voltage.
The reaction took place in a closed unstirred reactor
composed of two parallel circular and transparent
plates separated by a fixed gap of 0.3 mm. As the liquid

reaction did not present any free surface, the thickness of
the reaction was kept constant for any rotational frequency.
The inner diameter of the Petri dish containing the reactants
was kept constant and equal to 10 cm for all experiments
here reported.

For a typical experiment, after the reactants were placed
in the reactor, the rotational speed was slowly increased to a
set value and then held constant for a period during which
observations were made and measurements were taken. The
speed was slowly increased again to a higher value and the
procedure repeated until data was obtained for all desired
rotational speeds.

To visualize the reaction we used a CCD camera con-
nected to a DVD recorder and a PC for post-processing. The
1,4-cyclohexanedione-�CHD� based, bubble-free BZ reac-
tion was used with initial concentrations of 1.5M H2SO4,
0.1M CHD, 0.06M NaBrO3, 0.02M NaBr, and 7.5�10−4M
Ferroin. These parameters correspond with the oscillatory
regime of the reaction. The temperature was kept at
20±1 °C. No gel layer was considered to immobilize the
catalyzer as it may destroy any effect in the system.

Figure 1 depicts the dynamics of a target at 12.5 mm
from the center of rotation at 30 rpm �a�, 50 rpm �b�, and
70 rpm �c�. Both �b� and �c� show an increase of their
period with respect to �a�. At 70 rpm �c�, the increase is
such that the target center disappears and the system shows
a tendency towards excitability �that is, we could not
measure the next oscillation before the target was destroyed
by spiral waves at the boundaries�. Note that an increase of
the oscillation period of the target is translated into an in-
crease of the wavelength as the front velocity remains con-
stant. At larger distances from the center, target dynamics
are influenced by the boundary and oscillation periods
are altered.

In order to establish the influence of the distance from
the center of rotation and different rotational speeds on
the period, two targets were studied, one at 10.1 mm and
another at 19.8 mm from the rotational center. The experi-
mental results are shown, in normalized form, in Fig. 2.
The two sets of data are here plotted and almost fit a straight
line when the normalized period of oscillation �T /T0� is plot-
ted versus �r /v0. The parameters used for normalizing are*Permanent address: University of South Florida, USA.
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the period of oscillation without rotation, T0=22 s, and
the velocity of a wave front in the absence of rotation,
v0=0.11 mm/s. Note that the period of oscillation increases
with both the rotation frequency � and the distance to
the rotation center r. The dependence is clearly linear
�at least for the parameter range analyzed� with a least-
square linear fit given by T /T0= p1�wr /v0�+ p2 with

p1=0.0006±0.0001, p2=0.99±0.04, and a correlation
coefficient of 0.996.

III. NUMERICAL MODEL

The dynamics of a two-dimensional reaction-diffusion
medium subject to a force field generated by a rotation
around its center is given by

�q

�t
= Q�q,�� − � · J , �1�

where q is the species concentration vector, Q is a source
term, J is a molecular diffusion flux-vector matrix associated
with the rotation and � is a vector describing system
characteristics.

Our experimental work was carried out using the
Belousov-Zhabotinsky �BZ� reaction, which can be modeled
by the two-variable �2V� Oregonator model. The two-
dimensional velocity field resulting from the body rotation �
around the Z axis is given by V=r∧�, where r is the posi-
tion vector of our solution element with respect to the center
of rotation.

The resulting Oregonator 2V equations are then

�u

�t
=

1

�
�u�1 − u� − fv

q − u

q + u
� − � · Ju,

�v
�t

= u − v − � · Jv, �2�

where �u ,v� are the state variables representing the �HBrO2�
and �Ferroin� concentrations, and f , q, and � are constants
related to reaction kinetics �11�. Tyson’s “Lo” kinetic values

FIG. 1. �Color online� Behavior of a target located at 12.5 mm
from the rotational center for different velocities of rotation �a�
30 rpm, �b� 50 rpm, and �c� 70 rpm. �The arrow in the figures is just
a reference that shows the orientation of the Petri dish.�

FIG. 2. Oscillation periods �measured at the center of each tar-
get� vs the velocity of rotation times the distance from the target
center to the rotation center normalized by the wave-front velocity
without rotational forces. The experimental data is normalized
by T0=22 s and v0=0.11 mm/s. Two sets of data are plotted in
the same figure corresponding to two different distances from the
rotational center, 10.1 mm and 19.8 mm.
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�12� were used when scaling Eq. �1� using �
=1/0.018 s .u . /cm and �=1/21 t .u . / s �8� as length and
time scaling factors �s.u. stands for space units and t.u.
stands for time units�.

The values of f , q, and � were chosen so that our numeri-
cal model would reproduce the oscillating regime exhibited
by our experiments. A linear stability analysis of Eq. �2�
allows the use of f =1.4, q=0.002, and �=0.2 as the most
appropriate values for our simulations, and they were used
throughout all numerical work. Vectors Ju and Jv are the
scaled fluxes of components u and v.

We have considered that, due to the rotation, the chemical
components will be subject to centrifugal and Coriolis forces
as given by F=�2r+2V∧�. These forces will act upon the
components modifying their fluxes �13�. A linear approxima-
tion of the interaction of fluxes and forces was developed
and the obtained fluxes were

Ji = 3�2rDi
Mi�i

RT
�1 − �vi� − Di��i. �3�

The first term represents the contribution of the rotational
forces, and the second that of molecular diffusion. Here we
have used Ji, Di, Mi, �i, and vi, to represent the flux, molecu-
lar diffusion coefficient, molecular mass, density, and spe-
cific volume of components u and v �represented by index i�
in a solution of density � at a temperature T subject to a
rotation �. R is the ideal gas constant �that naturally appears
when using the expression for the chemical potential �=�0
+RT ln ��. In obtaining this equation we have assumed an
ideal solution behavior ���1g /cc�.

Using again Tyson’s “Lo” kinetic values �12� to scale the
fluxes we obtain

Ju = Buur − Du�u, Jv = Bvvr − Dv�v . �4�

We can now write the corresponding Oregonator 2V
equations that describe the reaction dynamics for a system
under rotational forces;

�u

�t
=

1

�
�u�1 − u� − fv

q − u

q + u
� − Bu��ur� + Du	u ,

�v
�t

= u − v − Bv��vr� + Dv	v , �5�

where Du and Dv are dimensionless diffusion coefficients of
�HBrO2� and �Ferroin�, respectively, and Bu and Bv are
dimensionless parameters associated with the rotation of the
solution

Bu = �2A�1 − �vu�Du, Bv = �2A�1 − �vv�Dv
Mv

Mu
. �6�

Here A= �3Mu�2� / �RT�2�, is a dimensionless constant, Mu

and Mv are the molecular masses of �HBrO2� and �Ferroin�,
and � the dimensionless rotational speed.

To the best of our knowledge, there are no reliable experi-
mental values for the specific volumes �9,10,12,14�, appear-
ing in Eq. �6�. In order to reproduce accurately the dynamics

of the Belousov-Zhabotinsky reaction with a 2V Oregonator
model, we make in Eq. �6�,

A�1 − �vu� = A�1 − �vv� = K . �7�

In this way, the parameters associated with the rotation
become

Bu = K�2Du, Bv = K�2Dv
Mv

Mu
. �8�

The set of equations �Eqs. �5�� was integrated using the
Alternating Direct Implicit �ADI� �16� method with mesh
sizes �in all cases� of 257�257 �pixel2�, step sizes 	x=	y
=0.78125 s .u. and a time step of 	t=0.0001 t .u. Zero-flux
conditions were set for all chemical concentrations at the
domain boundaries. A fully developed target with a period of
oscillation T0=7.103 t .u was used as the initial state for our
simulations. The diffusion coefficients Du and Dv were cho-
sen as 1 and 0.6, respectively, �10�. K=−2.5�10−5 in all
simulations here presented.

IV. NUMERICAL RESULTS

Rotational speed influences reaction dynamics through the
term K�2 as indicated by Eq. �8�. The influence of K�2 on
the period of a target located at different distances from the
center of rotation is shown in Fig. 3. The oscillation period
has been normalized with T0=7.103 t .u. corresponding to
the oscillation period in the absence of rotation. The maxi-
mum distance from the center of rotation, rmax=100.9 s .u.,
was used to normalize distances. The normalized periods of
oscillation are shown as a function of the normalized dis-
tance for values of K�2 of �a� 0, �b� −0.0037, �c� −0.0074,
�d� −0.011, �e� −0.0184, and �f� −0.0257. The period of os-
cillation is observed to increase with both distance and the

FIG. 3. Normalized period of oscillation vs normalized distance
to the rotational center for values of K�2 of �a� 0, �b� −0.0037, �c�
−0.0074, �d� −0.011, �e� −0.0184, and �f� −0.0257. As the rotation
speed and/or the distance increase, border effects become more pro-
nounced and there is a boundary, �g� in the figure, beyond which
they cannot be ignored.
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speed of rotation. As the rotation speed and/or distance in-
crease, border effects become more pronounced and there is
a boundary, �g� in the figure, beyond which they cannot be
ignored.

Figure 4 plots the normalized periods of oscillation versus
�r /v0 for two sets of numerical data corresponding to nor-
malized distances of 0.2 and 0.4, respectively �parameters
used for normalizing T0=7.1 t .u. and v0=2.7 s .u . / t .u.�. It
is important to note that here, as in the experimental case
shown in Fig. 2, the dependence is qualitatively linear. A
least-square linear fit gives p1=0.0004±0.0001,
p2=0.99±0.03, and a correlation coefficient of 0.91 �being
T /T0= p1�wr /v0�+ p2�. Also note that the slopes of the ex-
perimental and numerical curves are compatible within the
experimental errors.

From Eq. �4� the radial components of the fluxes can be
obtained

Ru = �Buu�r� − Du
�u

� �r��er,

Rv = �Bvv�r� − Dv
�v
� �r��er, �9�

where er is the radial unitary vector.
The period increase resulting from the rotation can be

attributed to an increase of the radial fluxes. Figure 5 shows
the radials fluxes, as described by Eq. �9�, as a function of
the radial distance for several propagation fronts. Radial
fluxes for K�2=0 �a� are smaller, in absolute value, than
those obtained with K�2=−0.011 �b�, which can also be ob-
served to increase with the distance from the center of
rotation. Also note that the inhibitor �Ferroin� flux in �b� is

larger than the activator flux �HBrO2�, thus, the appearance
of a new front wave is slowed down and the periods in-
creased. In case �a�, with no centrifugal forces, the situation
is just the opposite, the inhibitor flux is smaller than the
activator flux, thus the generation of a new front wave is not
inhibited. As the distance to the rotational center is increased,
the inhibitor flux may become large enough as to completely
suppress the appearance of a new front, so that this particular
region may become excitable. Note that the global effect of
the rotation of the system is translated into an increase of the
effective diffusion coefficient of the chemicals; there is no
flow in the system once the stationary regime is achieved. It
is the increase of the effective diffusion coefficients that
causes larger radial fluxes and, thus, increases the period of
oscillation. Also note that although the effective diffusion
coefficients are increased, there is no transport of chemicals
and, thus, no flow in the system.

V. CONCLUSIONS

Both our numerical and experimental results indicate that
the centrifugal forces resulting from a rotation, when acting
on a target generated on an active oscillating medium, in-
crease its oscillation period and that this increase becomes
larger as we move away from the center of rotation. The
numerical simulations qualitatively describe the experimen-
tal results, indicating that the increase in period is due to a
centrifugal-force-induced increase in inhibitor dispersion that
delays the appearance of the activator. The effect becomes
more pronounced as we move away from the center of rota-
tion. In the limit, the medium loses its oscillating character
and we can consider its oscillating period to be infinite. Such
a behavior is shown in Fig. 1�c� and can be directly attrib-
uted to a loss in the oscillating nature of the solution as a
consequence of inhibitor dispersion. Similarly, this interpre-
tation could justify the appearance of cardiac function
disruptions on individuals subject to extreme centrifugal
force exposure �15�.

FIG. 4. Normalized period of oscillation vs the velocity of ro-
tation times the distance from the target center to the rotation center
normalized by the wave-front velocity without rotational forces.
The data are normalized by T0=7.1 t .u. and v0=2.7 s .u . / t .u. Two
sets of data are plotted in the same figure corresponding to two
different normalized distances from the rotational center, 0.2 s .u.
and 0.4 s .u.

FIG. 5. Radial components of the fluxes for u �dashed line� and
v �solid line�. Two cases are plotted for �a� K�2=0 and �b�
K�2=−0.011.
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